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Social influence analysis (SIA) is a vast research field that has attracted research interest in many areas. In
this paper, we present a survey of representative and state-of-the-art work in models, methods, and eval-
uation aspects related to SIA. We divide SIA models into two types: microscopic and macroscopic models.
Microscopic models consider human interactions and the structure of the influence process, whereas
macroscopic models consider the same transmission probability and identical influential power for all
users. We analyze social influence methods including influence maximization, influence minimization,
flow of influence, and individual influence. In social influence evaluation, influence evaluation metrics
are introduced and social influence evaluation models are then analyzed. The objectives of this paper
are to provide a comprehensive analysis, aid in understanding social behaviors, provide a theoretical
basis for influencing public opinion, and unveil future research directions and potential applications.

� 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Online social networks such as Weibo, Twitter, and Facebook
provide valuable platforms for information diffusion among their
users. During this process, social influence occurs when a person’s
opinions, emotions, or behaviors are affected by other people [1].
Thus, changes occur in an individual’s attitudes, thoughts,
feelings, or behaviors as a result of interaction with other people
or groups. Social influence analysis (SIA) is becoming an impor-
tant research field in social networks. SIA mainly studies how to
model the influence diffusion process in networks, and how to
propose an efficient method to identify a group of target nodes
in a network [2]. Studied questions include: Who influences
whom; who is influenced; who are the most influential users,
and so forth. SIA has important social significance and has been
applied in many fields. Viral marketing [3–10], online recommen-
dation [11], healthcare communities [12–14], expert finding
[15–17], rumor spreading [18], and other applications all depend
on the social influence effect [19–21]. Analyzing social influence
can help us to understand peoples’ social behaviors, provide the-
oretical support for making public decisions and influencing pub-
lic opinion, and promote exchanges and dissemination of various
activities [22].
This paper provides a comprehensive view of SIA from the
aspects of models, methods, and evaluation. To this end, we iden-
tify the strengths and weaknesses of existing models and methods,
as well as those of the evaluation of social influence. First, we
review existing social influence models. Next, we summarize social
influence methods. Finally, we analyze the evaluation of social
influence.

The rest of this paper is organized as follows. In Section 2, we
discuss SIA models. In Section 3, we analyze SIA methods, includ-
ing influence maximization, influence minimization, flow of influ-
ence, and individual influence. We then detail social influence
evaluation in Section 4. Finally, we summarize the reviewed mod-
els and methods of social influence, and discuss open questions.
2. Social influence analysis models

SIA models have been widely studied in the literature. We clas-
sify these models into two categories: microscopic and macro-
scopic models.
2.1. Microscopic models

Microscopic models focus on the role of human interactions,
and examine the structure of the influence process. The two fre-
quently used influence analysis models in this category are the
independent cascade (IC) [23–25] and linear threshold (LT)
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[23,26] models. Since Kempe et al. [23] used these two models,
they are still mainly used to assess social influence diffusion.
2.1.1. The IC and LT models
The IC model. In a social network G ¼ ðV ; EÞ with a seed set S

(S#V), where V is the set of nodes and E is the set of edges, and
St (St #V) is the set of nodes that are activated at step t (t P 0).
At step t þ 1, every node v i 2 St can activate its out-neighbors
v j 2 V n [06i6tSi with an independent probability Pij. The process
ends when no node can be activated. Note that a node has only
one chance to activate its out-neighbors after it has been activated,
and the node remains an activated node after it is activated.

The LTmodel. In a social networkG ¼ ðV ; EÞ, the sumof the influ-
ence weights of all the neighbors of node vi meets

P
v j2Ngact

i

wij 6 1,

where wij is the influence weight between node vi and its neighbor
node vj, and Ngact

i
is the set of its neighbor nodes activated by node

vi. Node vi randomly selects its own threshold hi, uniformly chosen
from0 to 1. Onlywhen the sumof the influenceweights of its neigh-
bor nodes exceeds this threshold will vi be activated.
2.1.2. Variations
For both the IC and LT models, it is usually necessary to run the

Monte Carlo simulation in order to estimate a node’s influence for a
sufficient time period. However, this is time-consuming and
unsuitable for large-scale social networks. Many researchers have
proposed methods to improve the IC and LT models. Here, we
divide these improvements into four categories: variations of the
IC model, variations of the LT model, variations of both the IC
and LT models, and models that differ from the IC or LT models
and their variations. We only list representative works in this
paper.

(1) Variations of the IC model. Some researchers have consid-
ered time delay and time-critical constraints for influence diffu-
sion. Chen et al. [27] extended the IC model and proposed an IC
model with meeting events (IC-M model). In the IC-M model, the
activated node has the probability to meet the inactive node. Com-
pared with the general IC model, the calculation results from this
model are closer to the actual situation, although the calculation
of time consumption is slightly above that of the IC model. Feng
et al. [28] incorporated novelty decay into the IC model. Based
on previous studies, they found that repeated exposures have
diminishing influence on users. Therefore, they developed a prop-
agation path-based algorithm to assess the influence spread of
seed nodes. There are two values on each edge of a social network:
influence probability and expected influence delay time.
Mohamadi-Baghmolaei et al. [29] considered important time and
trust factors, and proposed the trust-based latency-aware indepen-
dent cascade (TLIC) model. This is the first time trust has been
studied in a classic IC model. In the TLIC model, a node can change
its state (i.e., as active or inactive) with different probabilities for a
trusted neighbor node than for a distrusted neighbor. Budak et al.
[30] introduced the multi-campaign IC model, which models the
diffusion of two cascades evolving simultaneously. They studied
the notion of competing campaigns, in which the good campaign
counteracts the effect of a bad campaign in a social network.

(2) Variations of the LT model. Liu et al. [31] considered the
containment of competitive influence diffusion in social networks,
and extended the LT model to construct the diffusion-containment
(D-C) model. The traditional LT model is not applicable to that a
situation concerns both the diffusion and the containment of the
influence. In the D-C model, the state of a node is described by
the activation probability; each node is only influenced by a neigh-
bor with a higher probability, and the sum of the probabilities of
possible node states is not greater than 1. Borodin et al. [32]
analyzed the competitive influence diffusion of different models
based on the LT model.

(3) Variations of both the IC and LT models.Mohammadi et al.
[33] considered the time delay and proposed two diffusion models:
the delayed independent cascade (DIC) model and the delayed lin-
ear threshold (DLT) model. In these two models, nodes have three
states: active, inactive, and latent active. To pass from an inactive
state to an active state, a node must pass through the middle pro-
cess of being in a latent active state. Compared with the traditional
IC and LT models, the effect of influence diffusion in this model is
better. However, because more than one state is possible, the cal-
culation complexity is relatively high. In the IC and LT models,
information diffusion is treated as a series of node state changes
that occur in a synchronous way. However, the actual diffusion
takes place in an asynchronous way, and the time stamps of the
observed data are not evenly spaced out. Some models relax the
synchronicity assumption of traditional IC and LT models and
extend these two models to make the state change asyn-
chronously. Saito et al. [34] proposed the asynchronous exten-
sions: asynchronous IC (AsIC) and asynchronous LT (AsLT)
models. Their learning algorithm can estimate the influence
degrees of nodes in a network from relatively few information dif-
fusion results, which avoids the overfitting problem. Guille and
Hacid [35] also presented an asynchronous model—time-based
AsIC model—to model the diffusion process. Other studies
[30,32,36–44] have improved the classical models in specific direc-
tions. Fan et al. [38] introduced two models: the opportunistic one-
activate-one (OPOAO) model, in which each person can only com-
municate with another person simultaneously; and the determin-
istic one-activate-many (DOAM) model, which has a mechanism
that is similar to an information broadcast procedure. For the
OPOAO model, they used the classical greedy algorithm to produce
a (1� 1=e) approximation ratio; for the DOAM model, they pro-
posed a set cover-based greedy (SCBG) algorithm to achieve an
OðlnnÞ (n is the number of vertices) factor solution. The transmis-
sion probabilities in these two models are the same for all users.
Galam [45] proposed a model that investigates opinion dynamics,
followed by Lee et al. [39], who proposed a new scheme to improve
Galam’s model. Nevertheless, these models are confined to word-
of-mouth information-exchanging process.

(4) Models that differ from the IC or LT models and their
variations. Some models are different from the IC or LT models
and their variations, and have solved information influence diffu-
sion from a new point of view. Lin et al. [46] proposed a data-
driven model to maximize the expected influence in the long
run using meta-learning concepts. However, this model needs
large amounts of data, and the accuracy of its results requires fur-
ther improvement. Golnari et al. [47] proposed a heat conduction
(HC) model. It considers a non-progressive propagation process,
and is completely different from the previous IC or LT models,
which only consider the progressive propagation process. In the
HC model, the influence cascade is initiated from a set of seeds
and arbitrary values for other nodes. Wang et al. [48] studied
emotion influence in large-scale image social networks, and pro-
posed an emotion influence model. They designed a factor graph
model to infer emotion influence from images in social networks.
Gao [49] proposed a read-write (RW) model to describe the
detailed processes of opinion forming, influence, and diffusion.
However, there are three main issues that this model needs to
consider further: the many parameters of the model that must
be inferred, the proper collection of datasets about opinion influ-
ence and diffusion, and the evaluation metrics that are suitable
for this task.

Whether a classical IC or LT model or a new model, the ultimate
goal for a model of social influence is to achieve faster computing
speed and more accurate results, while using less memory.
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However, these microscopic models are lacking in some major
details. Firstly, because of the difference in characteristics
(i.e., educational background and individual consciousness), differ-
ent people identify with the same information to different degrees.
Secondly, different individuals have different capabilities to influ-
ence other users; also, spreaders with different degrees of author-
ity have different impacts on their neighbors and on society.
Thirdly, the probability that an individual will transmit a piece of
information to others is not constant, and should depend on the
individual’s attraction to the information. Moreover, these models
use a binary variable to record whether an individual becomes
infected. In addition, they assume that once an individual is
infected, the individual never changes its state; however, this
assumption does not reflect the realistic smoothness of the transi-
tion of individuals from one state to another.

2.2. Macroscopic models

Macroscopic models consider all users to have the same attrac-
tion to information, the same transmission probability, and identi-
cal influential power. However, since macroscopic models do not
take individuals into account, the accuracy of these models’ results
is lower. To improve such models, therefore, the differences
between individuals should be considered. Macroscopic models
divide nodes into different classes (i.e., states) and focus on the
state evolution of the nodes in each class. The percentage of nodes
in each class is expressed by simple differential equations. Epi-
demic models are the most common models that are used to study
social influence from a macroscopic perspective. These models
were mainly developed to model epidemiological processes. How-
ever, they neglect the topological characteristics of social net-
works. The percentage of nodes in each class is computed by
mean-field rate equations, which are too simple to depict such a
complex evolution accurately. Daley and Kendall [50] analyzed
the similarity between the diffusion of an infectious disease and
the dissemination of a piece of information, and proposed the clas-
sic Daley–Kendall model. Since then, researchers have improved
these epidemic models in general to overcome their weaknesses.
Refs. [50–53] consider the topological characteristics of underlying
networks in their methods. However, these scholars have ignored
the impact of human behaviors in the influence diffusion process.

Researchers have recently begun to consider the role of human
behaviors and different mechanisms during information influence
diffusion [54–60]. Zhao et al. [59,60] proposed the susceptible–in
fected–hibernator–removedmodel as an extension from the classi-
cal susceptible–infected–removed (SIR) model in order to incorpo-
rate the forgetting and remembering mechanism; they
investigated this problem in homogeneous and inhomogeneous
networks. Wang et al. [54] proposed a variation of the rumor-
diffusion model in online social networks that considers negative
or positive social reinforcements in the acceptant probability
model. They analyzed how social reinforcement affects the spread-
ing rate. Wang et al. [55] proposed an SIR model by introducing the
trust mechanism between nodes. This mechanism can reduce the
ultimate rumor size and the velocity of rumor diffusion. Xia et al.
[56] presented a modified susceptible–exposed–infected–removed
(SEIR) model to discuss the impact of the hesitating mechanism on
the rumor-spreading model. They took into account the attractive-
ness and fuzziness of the contents of rumors, and concluded that
the more clarity a rumor has, the smaller its effects will be. Su
et al. [57] proposed the microblog-susceptible–infected–removed
model for information diffusion by explicitly considering users’
incomplete reading behavior. In Ref. [58], motivated by the work
in Refs. [56,57], Liu et al. extended the model in Ref. [56] and pro-
posed a new SEIR model on heterogeneous networks in order to
study the diffusion dynamics in a microblog.
3. Social influence analysis methods

SIA methods are used to solve the sub-problems of social net-
work influence analysis, such as influence maximization, influence
minimization, flow of influence, and individual influence. All these
problems involve influence diffusion, so the same influence model
can apply to all of them in some cases. However, the ultimate goal
of using the model is different for each problem.

3.1. Influence maximization

Influence maximization requires finding the most influential
group of members in social networks. Kempe et al. [23] formulated
this problem. Given a directed graph with users as nodes, edge
weights that reflect the influence between users, and a budget/
threshold number k, the purpose of influence maximization is to
find k nodes in a social network, so that the expected spread of
the influence can be maximized by activating these nodes. This is
a discrete optimization problem that is non-deterministic
polynomial-time (NP)-hard for both the IC and LT models. Influ-
ence maximization is the most widely studied problem in SIA. Les-
kovec et al. [10] and Rogers [20] studied this problem as an
algorithmic problem, and proposed some probabilistic methods.
Influence maximization must achieve fast calculation, high accu-
racy, and low storage capacity. Most of the algorithms that con-
sider the differences between individuals are based on greedy
algorithms or heuristic algorithms.

3.1.1. Greedy algorithms
Greedy algorithms ‘‘greedily” select the active node with the

maximum marginal gain toward the existing seeds in each itera-
tion. The study of greedy algorithms is based on the hill-climbing
greedy algorithm, in which each choice can provide the greatest
impact value of the node using the local optimal solution to
approximate the global optimal solution. The advantage of this
algorithm is that the accuracy is relatively high, reaching
(1� 1=e� e) for any e > 0. However, the algorithm has high com-
plexity and high execution time, so the efficiency is relatively poor.
Kempe et al. [23] were the first to establish the influence of the
maximum refinement as a discrete optimization problem, and pro-
posed a greedy climbing approximation algorithm. Leskovec et al.
[61] proposed a greedy optimization method, the cost-effective
lazy forward (CELF) method. Chen et al. [27] put forward new
greedy algorithms, the NewGreedy and MixGreedy methods. Zhou
et al. [62] proposed the upper bound-based lazy forward (UBLF)
algorithm to discover top-k influential nodes. They established
new upper bounds in order to significantly reduce the number of
Monte Carlo simulations in greedy algorithms, especially at the ini-
tial step. Some of the algorithms that are used to study the differ-
ences between individuals are based on these greedy algorithms.

3.1.2. Heuristic algorithms
Due to the high computational complexity of greedy algorithms,

many excellent heuristic algorithms have been proposed to reduce
the solution-solving time and pursue higher algorithm efficiency.
These heuristic algorithms iteratively select nodes based on a
specific heuristic, such as degree or PageRank, rather than comput-
ing the marginal gain of the nodes in each iteration. Their draw-
back is that the accuracy is relatively low. The most basic
heuristic algorithms are the Random, Degree, and Centrality
heuristic algorithms proposed by Kempe et al. [23]. Based on the
degree of the heuristic algorithm, Chen et al. [41] proposed a
heuristic algorithm for the IC model: DegreeDiscount. They then
proposed a new heuristic algorithm, prefix excluding maximum
influence arborescence (PMIA) [63]. For the LT model, Chen et al.
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[63] proposed local directed acyclic graph (LDAG) heuristic algo-
rithm. Of course, other heuristic algorithms are also based on these
heuristic algorithms, such as SIMPATH [64] and IRIE [65]. Borgs
et al. [66] made a theoretical breakthrough and presented a quasi-
linear time algorithm for influence maximization under the IC
model. Tang et al. [67] proposed a two-phase influence maximiza-
tion (TIM) algorithm for influence maximization. The expected
time of the algorithm is O½ðkþ ‘ÞðnþmÞ logn=e2�, and it returns a
(1� 1=e� e) approximate solution with at least ð1� n�‘Þ
probability.

The time complexity of the abovementioned algorithms is
shown in Table 1 [23,41,61,63–67].

Here, we describe some representative studies that take into
account individual differences or the user’s own attributes. Li
et al. [68] considered the behavioral relationships between
humans (i.e., regular and rare behaviors) in order to simulate the
effects of heterogeneous social networks to solve the influence
maximization problem. They proposed two entropy-based heuris-
tic algorithms to identify the communicators in the network, and
then maximized the impact of the propagation. Although the
entropy-based heuristic performance is better than those of Degree
[23] and DegreeDiscount [41], this method is still based on heuris-
tic ideas, so its accuracy is inadequate. Subbian et al. [69] proposed
the individual social value: Existing influence maximization algo-
rithms cannot model individual social value, which is usually the
real motivation for nodes to connect to each other. Subbian et al.
[69] used the concept of social capital to propose a framework in
which the social value of the network is calculated by the number
of bindings and bridging connections. The performance of the algo-
rithm is better than that of PMIA [63], PageRank, and the weighted
degree method. Li et al. [70] proposed a conformity-aware cascade
(C2) model and a conformity-aware greedy algorithm to solve the
influence maximization problem. This algorithm works well when
applied to the distributed platform. However, because it is based
on the greedy algorithm and considers the conformity-aware cal-
culation, the complexity of the calculation still requires improve-
ment. Lee and Chung [71] formulated the influence maximization
problem as a query processing problem for distinguishing specific
users from others. Since influence maximization query processing
is NP-hard, and since solving the objective function is also NP-
hard, they focused on how to approximate optimal seeds effi-
ciently. Node features are always overlooked when estimating
the impact of different users. Deng et al. [72] addressed influence
Table 1
The time complexity of different algorithms.

Algorithm Time complexity

Hill-climbing greedy [23] OðknRmÞ
CELF [61] OðknRmÞ
NewGreedyIC [41] OðkRmÞ
NewGreedyWC [41] OðkRTmÞ
MixGreedyIC [41] OðkRmÞ
MixGreedyWC [41] OðkRTmÞ
DegreeDiscountIC [41] Oðk lognþmÞ
PMIA [63] O½ntih þ knohnihðnih þ lognÞ�
LDAG [63] Oð‘v þ n log ‘v Þ
SIMPATH [64] OðkmnÞ
IRIE [65] OðkmnÞ
Quasilinear time algorithm [66] O½ke�2ðmþ nÞ logn�
TIM [67] O½ðkþ ‘Þðmþ nÞ logn=e2�

n: number of vertices in G; m: number of edges in G; k: number of seeds to be
selected; R: number of rounds of simulations; T: number of iterations; tih, noh, nih:
constants decided by h; h: the influence threshold; nih ¼ maxv2VfjMIIAðv ; hÞjg;
noh ¼ maxv2VfjMIOAðv ; hÞjg; MIIAðv ; hÞ=MIOAðv ; hÞ: the maximum influence in
arborescence/out arborescence of a node v; tih: the maximum running time to
compute MIIAðv ; hÞ; ‘: number of communities in the network; e: any constant
larger than 0; ‘v : the volume of LDAGðv ; hÞ.
maximization while considering this factor. They presented three
quantitative measures to respectively evaluate node features: user
activity, user sensitivity, and user affinity. They combined node
features into users’ static effects, and then used the continuous
exponential decay function to convert the strength of a user’s
dynamic influence between two adjacent users. They also pro-
posed the credit distribution with node features (CD-NF) model,
which redefines the credit, and designed the greedy algorithmwith
node features (GNF) based on the CD-NF model.

When considering a certain class or influence maximization, the
individual’s attributes will have a great impact on the results;
therefore, individual differences or the user’s attributes need to
be taken into account. From the descriptions above of the studies
on individual differences, it is clear that most studies are based
on the greedy algorithm in order to improve the accuracy. How-
ever, heuristic algorithms will be improved by a pursuit of high
efficiency and low complexity, because the greedy algorithm is
computationally complex. In order to reduce the running time, a
considerable amount of work will be carried out on a distributed
platform. Due to the individual differences, the computational
complexity will be further increased compared with the original.
So, for the time being, it is necessary to improve the complexity
of the calculation and the accuracy of the results.

3.2. Influence minimization

Assuming that the negative information propagates in a net-
work G ¼ ðV ; EÞ with the initially infected node set S#V , the goal
of influence minimization is to minimize the number of final
infected nodes by blocking k nodes (or vertices) of the set D#V ,
where k (�|V|) is a given constant. It can be expressed as the fol-
lowing optimization problem:

D� ¼ arg min
D#V ;jDj6k

rðS V n Dj Þ ð1Þ

where rðS V n Dj Þ denotes the influence of set S when nodes in the
set D are blocked.

From this notion [73], we know that influence minimization is a
dual problem of influence maximization. Influence minimization
mainly used to curb rumors, monitor public opinion, and so on.
Yao et al. [73] proposed a method to minimize adverse effects in
the network by preventing a limited number of nodes from the
perspective of the topic model. When rumors and other adverse
events occur in social networks and some users are already
infected, the purpose of this model is to minimize the number of
final infected users. Wang et al. [74] proposed a dynamic rumor
influence minimization model with user experience. This model
minimizes the influence of rumors (i.e., the number of users who
accept and send rumors) by preventing part of the nodes from acti-
vating. Groeber et al. [75] designed a general framework of social
influence inspired by the social psychological concept of cognitive
dissonance, in which individuals minimize the preconditions for
disharmony arising from disagreements with neighbors in a given
social network. Chang et al. [76] explored the first solution to esti-
mate the probability of successfully bounding the infected count
below the out-of-control threshold; this can be logically mapped
to outbreak risk, and can allow authorities to adaptively adjust
the intervention cost to meet necessary risk control. They then pro-
posed an influence minimization model to effectively prevent the
proliferation of epidemic-prone diseases on the network.

3.3. Flow of influence

When information spreads, it is accompanied by influence flow
[77]. In recent years, the flow of influence methods has been stud-
ied by many researchers. Subbian et al. [78] proposed a flow
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pattern mining approach with the condition of specific flow valid-
ity constraints. Kutzkov et al. [79] proposed a streaming method
called STRIP to compute the influence strength along each link of
a social network. Teng et al. [80] examined real-world information
flows in various platforms, including the American Physical Soci-
ety, Facebook, Twitter, and LiveJournal, and then leveraged the
behavioral patterns of users to construct virtual information influ-
ence diffusion processes. Chintakunta and Gentimis [81] discussed
the relationships between the topological structures of social net-
works and the information flows within them. However, unlike
microblogging platforms, most social networks cannot provide suf-
ficient context to mine the flow pattern.
3.4. Individual influence

Individual influence is a relatively microscopic assessment that
models the influence of a user on other users or on the whole social
network. Chintakunta and Gentimis [81] proposed a method called
SoCap to find influencers in a social network. They modeled influ-
encer finding in a social network as a value-allocation problem, in
which the allocated value represents the individual social capital.
Subbian et al. [82] proposed an approach to identify influential
agents in open multi-agent systems using the matrix factorization
method to measure the influence of nodes in a network. Liu et al.
[83] presented the trust-oriented social influence (TOSI) method,
which considers social contexts (i.e., social relationships and social
trust between participants) and preferences in order to assess indi-
vidual influence. The TOSI method greatly outperforms SoCap in
terms of effectiveness, efficiency, and robustness. Deng et al. [84]
incorporated the time-critical aspect and the characteristics of
the nodes when evaluating the influence of different users. The
results showed that their approach is efficient and reasonable for
identifying seed nodes, and its prediction of influence spread is
more accurate than that of the original method, which disregards
node features in the diffusion process.

In conclusion, considering more comprehensive user character-
istics and user interaction information results in higher result
accuracy.
4. Social influence evaluation

4.1. Influence evaluation metrics

Running time is a very intuitivemeasure ofmodel efficiency that
is easy to calculate. In general, under the same conditions, the faster
a model runs, the better it is. However, the traditional greedy algo-
rithm calculates the range of influence spreading for a given node
set by a large number of repeated Monte Carlo simulations, result-
ing in a considerable running time. Especially in the face of current
large-scale social networks, the existing algorithms cannot meet
the application requirements for efficiency. Therefore, running time
is an important measure of social influence evaluation.

Since the influence-spreading problem is NP-hard, it is difficult
to obtain an optimal solution of the objective function. Most of the
existing algorithms rely on monotonicity and submodularity of the
function to achieve (1� 1=e) approximation [23]. However,
attempts to achieve a higher approximation ratio have never
stopped. Zhu et al. [85] proposed semidefinite-based algorithms
in their model considering influence transitivity and limiting prop-
agation distance.

Another metric is the number of Monte Carlo calls. Because
there is no way to obtain an optimal solution, a Monte Carlo sim-
ulation is usually used to estimate the real value. Existing greedy-
based algorithms demand heavy Monte Carlo simulations of the
spread functions for each node at the initial step, greatly reducing
the efficiency of the models. The UBLF algorithm proposed by Zhou
et al. [62] can reduce the number of Monte Carlo simulations of
CELF method by more than 95%, and achieved a speedup of 2–10
times when the seed set is small.

The expected spread indicates the number of nodes that the
seed set can ultimately affect—and the larger the better. There
are many applications in real-life scenarios where the influence
spread needs to be maximized as much as possible. Typical exam-
ples of such applications are marketing and advertising. In both
applications, the final expected spread represents the benefits of
product promotion or the profitability of product. Therefore,
exploring high expected spread algorithms is an important prob-
lem for SIA.

Robustness refers to the characteristics of a certain parameter
perturbation (i.e., structure and size) that is used to maintain some
other performances. Both Jung et al. [65] and Liu et al. [83] men-
tioned robustness in their algorithms. The IRIE algorithm proposed
by Jung et al. [65] is more robust and stable in terms of running
time and memory usage across various density networks and cas-
cades of different sizes. The experimental results showed that the
IRIE algorithm runs two orders of magnitude faster than existing
methods such as PMIA [63] on a large-scale network, and only uses
part of the memory. The TOSI evaluation method proposed by Liu
et al. [83] shows superior performance in terms of robustness over
the state-of-the-art SoCap [81].

Scalability refers to the ability to continuously expand or
enhance the functionality of the system with minimal impact on
existing systems. In social networks, scalability usually refers to
the ability to expand from a small-scale network to a large-scale
network. It is a common indicator used to evaluate the quality of
a model. Due to the complexity of the algorithm and the long run-
ning time, the current solution algorithms only apply to small and
medium-sized social networks with nodes below one million.
Given today’s large-scale social networks, influence analysis algo-
rithms with good scalability must be designed to deal with the
challenges posed by massive social network data.
4.2. Social influence evaluation model

The evaluation of social influence is a complex process. As a
subjective attribute, a social relationship has many characteristics,
including dynamics, event disparity, asymmetry, transitivity, etc.
In social networks, frequent user interaction and changes in the
structure of the network make the evaluation of social influence
more difficult. The literature contains a few studies on the social
influence evaluation model. He et al. [86] designed an influence-
measuring model on the theme of online complaints; based on
the entropy weight model, this model monitors and analyzes the
static and dynamic properties of complaint information in real
time. Enterprises can use this model to manage online group com-
plaints. Wang et al. [12] proposed a fine-grained feature-based
social influence (FBI) evaluation model, which explores the impor-
tance of a user and the possibility of a user impacting others. They
then designed a PageRank algorithm-based social influence adjust-
ment model by identifying the influence contributions of friends.
The FBI evaluation model can identify the social influences of all
users with much less duplication (less than 7% with the model),
while having a larger influence spread with top-k influential users;
it was evaluated on three datasets: HEPTH [87], DBLP [88], and
ArnetMiner [89].
5. Conclusions and future work

In this paper, we survey state-of-the-art research on SIA from
the aspects of influence models, methods, and evaluation. We also
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analyze the strengths and weaknesses of current models and
methods. Throughout our study, we unveil future research direc-
tions and potential applications.

In social influence models, we distinguish two types of models:
microscopic and macroscopic models. Microscopic models con-
sider human interactions and the structure of the influence pro-
cess. Macroscopic models consider the same transmission
probability and identical influential power for all users. In future,
macroscopic models should focus on how to consider human
behaviors and different mechanisms during information diffusion.
Although many researchers have put considerable effort to
improving the classical models and proposing new models from
different perspectives—such as by adding constraints into models
and incorporating competitive influence diffusion—there is still
room for improvement.

In most existing models, a person is influenced only by the
other person in a monoplex network, and the influence diffusion
processes are independent. However, in real life, people often com-
municate with others in multiplex networks. In this situation,
social influence occurs in multiplex networks, and information
influence among different monoplex networks encounters cooper-
ation and competition. The question of how to model information
influence in multiplex networks is a valuable research topic. In
addition, the question of how to compute information influence
over time in dynamic networks should be studied. In most exper-
iments, datasets cover up to about 100000 nodes, so the issues
inherent in applying social network analysis-related issues to mas-
sive datasets (which may include millions or tens of millions of
nodes, or even more) require study. In short, there is still room
for research in extending SIA models to address perceived limita-
tions such as efficiency and scalability.
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